Terminale S

Quinzaine 1: Suites récurrentes . Probabilités conditionnelles

Comment fait-on pour calculer une valeur approchée de $\sqrt{2}$ ou de $\sqrt[3]{2}$ ?

Ces nombres seront définis mathématiquement comme des limites de suites récurrentes.

Pour simplifier récurrence = répétition, on passe d'un terme quelconque $x_n$ d'une suite récurrente au suivant $x_{n+1}$ toujours de la même manière

On généralise en quelque sorte la notion de suite arithmétique ou géométrique

On étudiera cette année des phénomènes aléatoires répétitifs comme le jeu de Crap dont la modélisation nécessite la notion de probabilité conditionnelle

Enfin qui dit répétition dit aussi boucle en algorithmique et nous verrons sur un problème comment un raisonnement par récurrence peut nous aider à trouver un algorithme

Quinzaine 2 : Limite de suite . Nombres complexes

Comment être sûr qu'un algorithme calcule "vraiment" une valeur approchée (et à combien près) de $\sqrt{2}$?

Il nous faut avoir prouvé au préalable que la suite récurrente mise en jeu dans l'algorithme tend vers $\sqrt{2}$

Nous découvrons un nouveau "langage" celui des nombres complexes, que nous utiliserons en géométrie. Nous étudions la forme algébrique et trigonométrique des nombres complexes

Quinzaine 3: Limite d'une fonction à l'infini. Indépendance de deux évènements

Au sujet des techniques d'étude du comportement des fonctions à l'infini il existe des grandes similitudes avec celles vues pour les suites

Nous ferons un TP en Python où nous simulerons le Jeu de Crap pour savoir qui gagne "sur le long terme" à ce jeu , la Banque ou le joueur ?

La modélisation du jeu de Crap n'est pas facile et la notion d'indépendance de deux évènements permet de simplifier cette étude

Quinzaine 4: Limite d'une fonction en un point . Continuité et dérivabilité d'une fonction en un point

A de nombreuses reprises cette année, lorsqu'on voudra prouver l'existence d'un objet mathématique, comme la solution d'une équation ou la primitive d'une fonction, nous utiliserons un outil important celle de la continuité d'une fonction.

La continuité et la dérivabilité d'une fonction en un point sont définies à partir de la notion de limite d'une fonction en un point

Quinzaine 5: Géométrie dans l'espace et la fonction exponentielle

La fonction exponentielle nous aide à modéliser des phénomènes comme la croissance de la population humaine, ou la désintégration de noyaux radioactifs

Quinzaine 6: Nombres complexes (forme exponentielle) Théorème des valeurs intermédiaires

Le théorème des valeurs intermédiaires est un "grand" théorème d'Analyse, qui nous servira à prouver l'existence de solutions à une équation que nous ne pouvons pas résoudre de manière algèbrique

Les nombres complexes ont une forme algébrique pour les problèmes mettant en jeu l'addition et une forme exponentielle pour les problèmes mettant en jeu la multiplication

Quinzaine 7: Logarithmes, variables aléatoires, Loi Binomiale

La fonction logarithme népérien est la fonction réciproque de la fonction exponentielle

Elle sert aussi de "base" pour définir toutes les fonctions logarithmes utiles en sciences

La notion de variable aléatoire permet d'utiliser le langage des fonctions dans le calcul des probabilités

Quinzaine 8: Calcul Intégral, Géométrie vectorielle dans l'espace

Le calcul intégral est un outil mathématique utile en sciences pour calculer des aires, des volumes,et plus généralement des moyennes de grandeurs "continues"

Nous étendons la géométrie vectorielle du plan à l'espace

Quinzaine 9: Exemples de variables aléatoires continues : Loi uniforme, Lois exponentielles. Produit scalaire

Le calcul intégral va nous permettre de définir des lois de probabilités de variables aléatoires continues

Nous étendons le produit scalaire du plan à l'espace

Quinzaine 10:Lois normales

La loi normale est une loi très utilisé dans les sciences expérimentales

Quinzaine 11:Echantillonnage et Estimation

Comment expliquer "l'efficacité" d'un sondage ?

Quelles sont les limites à la "pertinence" d'un sondage ?

Nous étudions un modèle mathématique d'un sondage