Lois exponentielles

Vallon

18 mars 2016

1 / 7

1 Lois exponentielles

Problème : J'ai acheté une ampoule.

Sur l'emballage il est écrit, $15\ 000\ h = 15$ ans sans aucune explication.

Comment interpréter cette indication?

Quelle est la probabilité que cette ampoule ne fonctionne plus au bout d'un an?

Modélisation

- La durée de vie d'une ampoule, en heures est une variable aléatoire $T: \Omega \to [0; +\infty[$
- Il peut paraître étonnant que T ne soit pas bornée!
- Voir le problème sur la marche aléatoire *N* le nombre moyen de déplacements ne l'était pas non plus!
- ullet Comme fonction de densité pour ${\mathcal T}$ on cherche f telle que

$$\lim_{x\to+\infty}\int\limits_0^x f(t)\mathrm{d}t=1$$

- f ne peut pas être constante car $\lim_{x\to +\infty} k \int\limits_0^x \mathrm{d}t = +\infty$ pour tout k>0
- Quelle fonction simple pour fonction de densité?

- $f: t \to \frac{1}{t^2}$ aurait pu convenir mais alors $E(T) \to +\infty$ ce qui est absurde (exercice)
- On choisit alors $f_{\lambda}: t \to \lambda \mathrm{e}^{-\lambda t}$ avec $\lambda > 0$

Définition

Une variable aléatoire T suit la loi exponentielle de paramètre $\lambda>0$ signifie que sa densité de probabilité est définie sur $[0;+\infty[$ par $f_{\lambda}:t\to\lambda \mathrm{e}^{-\lambda t}$

Théorème

Pour tout c et d appartenant à [a; b]

- $\bullet \lim_{x \to +\infty} \int_{0}^{x} \lambda e^{-\lambda t} dt = 1$
- $P(c \leqslant T \leqslant d) = e^{-\lambda c} e^{-\lambda d}$
- $P(T \geqslant c) = e^{-\lambda c}$
- $E(T) = \frac{1}{\lambda}$
- $\sigma(X) = \frac{1}{\lambda}$

Démonstration.

(Exercice)

Modélisation (suite et fin)

- On interprète 15 000 h comme la durée de vie moyenne d'une ampoule
- ullet On suppose que ${\cal T}$ suit une loi exponentielle de paramètre $\lambda=rac{1}{15000}$
- A raison de 2 heures par jour donc la probabilité cherchée est $P(T\leqslant720)=1-\mathrm{e}^{-\frac{720}{15000}}=0,047$
- Cet évènement n'est pas "rare", il est plus rare d'obtenir un double six en lançant deux dés $p = (\frac{1}{6})^2 = 0,027!$
- Il n'est donc pas "exceptionnel" , qu'une ampoule "prévue" durer "assez longtemps" , tombe en panne rapidement
- Il existe derrière cette indication une norme

